
Multi-Task Learning Based Neural Networks for
Density Estimation in City Environment

Mostafa Karimzadeh, Samuel Martin Schwegler, Torsten Braun
Institute of Computer Science, University of Bern, Switzerland

Email : {mostafa.karimzadeh, torsten.braun}@inf.unibe.ch, samuel.schwegler@students.unibe.ch

Abstract—abstract goes here, by Mostafa
Index Terms—Mobile analysis, Mobility Prediction, Mobility

Behavior, Location based Services.

I. INTRODUCTION

introduction goes here by Mostafa

II. RELATED WORK

related work goes here by Mostafa

III. SYSTEM MODEL

system model goes here by Samuel
A density predictor attempts to estimate the number objects

in a given area. In this work we used On Board Units (OBUs)
in a Vehicular Ad Hoc Network (VANet) in the urban area of
Porto, Portugal. The OBU devices were installed on vehicles
such as busses.

The mobility data comes as a vector in the shape xt =
[x1

t , x
2
t , ..., x

N
t ] where t is the current time step and xn is the

sum of connected OBUs to one of b Road-Side-Units (RSUs).
S2 is a library for spherical geometry. The S2 library enables

spatial indexing and approximating regions as collection of
discrete ”S2 cells”. This is done by working exclusively with
spherical projections, this mapping enables to approximate the
entire Earth’s surface with a minimum distortion of 0.56%. [1].
The globe starts as a cube with six cells. There are 31 cell
levels existing, each level divides the parent cells into four
smaller cells. The smallest cell level contains cells covering
an area of 12cm. For every longitude latitude position on the
planet and a level the S2 library can return the unique cell
which contains this coordinates. The unique cell labeling is
achieved by using a Hilbert curve on each of the level 0 cells.
This feature is used to group the RSUs into collections. In Fig.
1 the city centre of Porto can be seen with RSUs (red dots)
and S2 cells of level 13 (blue borders).

For the density prediction the sum of OBUs connected to
RSUs is mapped into S2 cells. This helps keeping the spatial
context and enables decreasing the sparsity of input data. By
only looking at single RSUs there are many phases were zero
or nearly zero OBUs are connected. The input data is sparse if
many of its coefficients are zero. The grouping also generalizes
the data and decreases the arbitrariness of the possibility for
an OBU to connect to a RSU.

The goal of our work was to make a prediction for the
mobility data vector at the time t+ 1 depending on the state

Fig. 1: city centre of Porto with RSUs and S2 Cells. Created
using leaflet[2]

in time t. In this case yn is the sum of connected OBUs to
any of r RSUs which belongs to a S2 cell.

The RSUs are not evenly distributed into S2 cells, this can
be seen in Fig. 1. For example U RSUs are existing for the
first S2 cell and W RSUs for the last of our M S2 cells.

In the temporal dimension the data was also grouped into
windows of 30 minutes which also helps decreasing the
sparsity. Therefore we have M S2 cells with 48 time-steps
t per day as our input dataset.

The grouping in time and space can be seen as:

yt+1

= [(u1
t+1 + u2

t+1 + ...+ uU
t+1), ..., (w

1
t+ + w2

t+1 + ...+ wW
t+1)]

= [y1t+1, ..., y
M
t+1]

The minimization of the differences between the ground
truth and predicted densities is the goal of this work. We want
to achieve this by using Neural Networks (NNs).

A. Neural Networks for Density Prediction

description of the mobility predictor goes here by Samuel
The density of OBUs in a VANET is changing over time.

Traffic is not linear and different for each cell. Simple density
estimators are not well suited for this problem. NNs have the
ability of learning this complex behaviour.



A regular neural network can not distinguish the spatio-
temporal correlation. Recurrent Neural Networks (RNNs) can
keep their internal memory during the processing of sequential
inputs. They jointly explore the spatio-temporal relationships.
[3] But simple RNNs can have problems with keeping long-
term dependencies. RNNs have a vanishing gradient which
causes the gradient to shrink at a rate that is exponential
in the number of time steps. To avoid this a Long Short
Team Memory (LSTM) is used in this work. A LSTM is a
specialised type of a RNN it was first mentioned in 1997
by Sepp Hochreiter and Jürgen Schmidhuber. [4] LSTMs
reparameterizing the RNN so their gradient cannot vanish.
LSTMs have the ability of keeping information learned over
a long period of time. This is achieved by a special designed
memory cell. [5] A LSTM can be expressed as

mt = gt � i−t + f t ∗mt−1

ht = ot �mt

where m is the internal state or memory, h the hidden state
and i the input state. The gates handle the information flow
of states. g defines whether the input state enters the internal
state. f is the forget gate which decides if the internal state
should forget the previous internal state. Finally the output
gate o decides if the internal state is passed to the output and
hidden state of the next time step. � denotes element wise
multiplication. [6]

These ability leading LSTMs to have an excellent perfor-
mance for predicting densities by learning temporal dependen-
cies.

As a benchmark for advanced Neural Network architectures
a LSTM that is only capable of predicting the density for
one S2 cell is used. The input features are only temporal not
spatial. This LSTM does not get any additional information
from other S2 cells or other predictors. This architecture is
referenced in this paper as ”single-task”. The system model is
shown in Fig. 2

Fig. 2: Predictor for a single task

B. Accelerated Neural Networks for Density Prediction

description of the mobility predictor goes here by Samuel
For advanced predictions the spatio-temporal correlations

are used. The input features are grouped spatially by S2 cell.
A task in this case is predicting the density for one s2 cell in
a given interval of time. The tasks are related to each others
because the OBUs are moving between RSUs in multiple S2
cells. The resemblance and dissimilitarity are information to
explore. This knowledge helps to improve the predictions. In
our work we want to show that sharing information between

tasks does not only help to increase the accuracy of the
predictor but does also decreases the training and testing time
per task.

For this improvements a multi-task architecture is used. This
network architecture is capable of sharing information between
tasks. Multi-task learning is a learning paradigm in machine
learning that aims to reduce the model error of a target task
by utilizing related auxiliary tasks. In comparison of Transfer
Learning multi-task learning learning simultaneously over
several correlated tasks and not after another in sequential.
Multi-Task learning means to learn a joint model of all tasks
in parallel. [7] For the density prediction all of the tasks are of
equal importance. They are all auxiliary tasks for each others,
learning one should enhance another task. Therefore transfer
learning with a parent providing information to a child process
does not cover the needs.

An advantage of multi-task learning is attention focusing.
For noisy tasks or limited and high-dimensional data it is
difficult for a model to differentiate between relevant and
irrelevant features. Here multi-task learning can help the model
to focus. Other tasks provide additional evidence whether a
feature is relevant or not. It is also possible that some tasks
are better in learning tasks than others. With the interaction the
model learns to predict important features. Multi-task learning
helps also reducing the risk of overfitting by introducing an
inductive bias. [8] With multi-task learning the need for data
samples for an accurate training and testing can be lowered.
[9] In our case we have a limited amount of entries as our
dataset and want to take advantage of these points.

In this work different multi-task architectures were used. All
of them have a shared learning machine machine which gets
inputs from all our M cells together and dedicated learning
machines that only serves a particular task for each of the
M cells. The output is the concatenation of the shared and a
dedicated layer.

In this work we tested architectures with hard and soft
parameter sharing. In soft parameter sharing each task has its
own model with own parameters. With hard parameter sharing
hidden layers are shared between all the parts and then having
task specific output layers. [8]

In the first architecture the dedicated learning machines
only get the input for their own task, like in the ”single-task”
architecture. We call this 1-to-n mode. The second architecture
provides all inputs to all dedicated layers. This mode we
call n-to-n. The differences are shown in Fig. 3. These two
architectures are using soft parameter sharing. As a third multi-
task architecture a method that uses hard parameter sharing is
used. This one is referenced as ”hard” in this paper.

In further work additional data like weather which would
be the same for all the s2 cells could be applied.

More Content

IV. EVALUATION

In the following section an evaluation methodology to
validate the proposed density prediction model is presented.

1) Dataset: datasets goes here by Mostafa



Fig. 3: Multi-Task Architecture (for simplification with only
two tasks

2) Evaluation Metrics: evaluation metrics goes here by
Samuel Our code is written too handle the density prediction
as classification or as regression problem.

The classification problem is a one-of-many Multi-Class
Classification. The density of OBUs is mapped into C classes.
The ground-truth is a one-hot encoded vector t with one pos-
itive class an C−1 negative classes. Categorical crossentropy
is the loss function for this problem:

L(y, ŷ) = −
M∑
j=0

N∑
i=0

(yi,j ∗ log(ŷi,j))

Where ŷ is our predicted value.
We measured the accuracy, recall and precision of our

prediction. To check that recall an precision are balanced we
use further the f1-score which is the harmonic mean between
recall an precision. The harmonic mean penalizes extreme
values.

For regression problems we used the mean squared error
(mse) as loss-function:

L(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2

Other metrics were root mean squared error (rmse) and
mean absolute error (mae)

3) Experimental Settings: evaluation parameters goes here
by Samuel

As test/train split we implemented a time-series cross-
validation on a rolling basis (also called ”expanding window
validation”). The training starts initially on a small set, then
the model is tested on one batch. This batch gets afterwards
added to the training set for the next batch. So the training
set increased for every part. This method is helpful if there is
only a limited amount of entries in the data set. For example
we had only data for some months and wanted to train and
test in different seasons and not only train in winter and test
in summer. This would be happened with a 70/30 split. Of
course shuffling is not an option with time series data as it
would vanish structure.With this form of train and test split
data is used for both training and testing and the time series are
taken into account. As an alternative also a ”sliding window”
test train split was tested. In this case the training section has
allways the same length and older values are dropped. An

advantage would be the faster training time but the tradeoff is
the lost of information.

For running the experiment we took eight connected S2 cells
in the city centre of Porto with the level of 13 which covers in
average an area of 1.27 km2. [1]. The code was also applied
on an other data set which was not grouped into spatial cells.
In this case densities were predicted for RSUs. In this work
we will go further into the work on the Porto set.

In the classification mode we mapped the count of con-
nected users into three categories. The boundaries of the
categories are chosen in a way that every category contains the
same amount of elements. So no category is over represented.
Because we avoided imbalanced class distribution accuracy is
a good way to check our performance.

The batch size of our LSTM was set to 12, with 70 neurons
for dedicated layers. We took time intervals of 30 minutes for
the density and worked with a time span of six months. 30
minutes were optimal in our case because within this timespan
the sparsity of the input data is reduced and it is still granular
enough to see patterns over the course of the day. The used
dataset contained tracefiles for 1000 users in a VANET. The
data was collected from winter to early summer 2017. For
recognizing seasonal patterns it would be of course better to
have data over multiple years.

For the machine learning we used the keras library[10]
which is a high-level neural network API, written in Python.
In our case keras war running on top of tensor flow. In order
to get the multi-task learning the functional API was used.

More Content

V. EVALUATION RESULTS

1) Density Prediction Results: results goes here by Samuel
In this section we show how multi-task learning improved the
performance of density prediction in urban areas.

To get reliable results we made 100 runs and then took
the average of our performances. For comparison the single
non multi-task architecture is showed with the 1ton and nton
multi-task that are useing soft parameter sharing and the hard
mutli-taks method that uses hard parameter sharing. The used
cells are in the city centre of porto. The density data was from
a tuesday.

An example for predictions in the regression mode are
shown in Fig. 4 the density was mapped from 0 (lowest
density) to 1 (maximal density).

Fig. 4: compared predictions for one example cell

In this example can be seen that the multi-task architectures
are reacting less extreme in comparison to the ”single” model.



The main focus of the prediction laid on a classification.
The biggest improvement of performance with multi-task
architectures can be seen in the f1 score (Fig. 5).

Fig. 5: f1-score for different cells and multi-task modes

The accuracy was slightly improved with multi-task meth-
ods that were using soft parameter sharing. But the hard-
parameter sharing approach lowered the average performance
form a single approach by 4.4% (Fig. 6).

Fig. 6: accuracy for different cells and multi-task modes

A high improvement the running time. We calculated the
runtime for multi-task predictions by dividing the overall
runtime by the number of cells. In this chart 100% is the
running time of the single architecture. The 1ton multi-task
architecture finishes after 77.5% of the single time (Fig. 7).

The differences between the two soft-parameter multi-task
approaches are small, we can not say in general that one
outperforms an other. But multi-task approaches are perform-
ing better than non multi-task approaches and soft-parameter
sharing is better than hard-parameter sharing for our problem.

Fig. 7: relative runtime for different cells and multi-task
modes. The runtime of the single mode is 1

VI. CONCLUSIONS

conclusion goes here by Mostafa

REFERENCES

[1] s2geometry io@googlegroups.com. S2 cell statistics. [Online].
Available: https://s2geometry.io/resources/s2cell statistics.html

[2] leaflet. [Online]. Available: https://leafletjs.com/
[3] C. Qiu, Y. Zhang, Z. Feng, P. Zhang, and S. Cui, “Spatio-temporal

wireless traffic prediction with recurrent neural network,” IEEE Wireless
Communications Letters, vol. 7, no. 4, pp. 554–557, Aug 2018.

[4] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997. [Online]. Available:
https://doi.org/10.1162/neco.1997.9.8.1735

[5] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration
of recurrent network architectures,” Journal of Machine Learning Re-
search, 2015.

[6] H. Wang, B. Raj, and E. P. Xing, “On the origin of deep learning,”
CoRR, vol. abs/1702.07800, pp. 47–52, 2017. [Online]. Available:
http://arxiv.org/abs/1702.07800

[7] S. Spieckermann, “Multi-task and transfer learning with recurrent neural
networks,” Dissertation, Technische Universität München, München,
2015.

[8] S. Ruder, “An overview of multi-task learning in deep neural
networks,” CoRR, vol. abs/1706.05098, 2017. [Online]. Available:
http://arxiv.org/abs/1706.05098

[9] Y. Zhang and Q. Yang, “A survey on multi-task learning,” 2017.
[10] F. Chollet et al., “Keras,” https://keras.io, 2015.


